FIND THE ANSWERS

find f(t) for L{f(t)}=[1/2s^2]-[(2e^-4s)/(s(1-e^-4s))]?

Answer this question

  • find f(t) for L{f(t)}=[1/2s^2]-[(2e^-4s)/(s(1-e^-4s))]?


Answers

Answer #1 | 23/12 2013 17:17
Hi L{f(t)} = (1/2) (1/s^2) - [ (2e^-4s) /(s(1-e^-4s))] L{f(t)} = (1/2) (1/s^2) - (2/s) [ (e^-4s) /(1-e^-4s)] L{f(t)} = (1/2) (1/s^2) - (2/s) [ e^-4s + e^-8s + e^-12s +...] f(t) = (1/2) t u(t) - 2 (u( t - 4) + u( t - 8) + u( t - 12) + .... )
Positive: 50 %

Possible answer

Scribd is the world's largest social reading and publishing site. Upload Sign in Join. Books Audiobooks Comics Sheet Music. Editors' Picks Books.
Read more
Positive: 50 %
If you are logged in, you won't see ads. ... LIBROS UNIVERISTARIOS Y SOLUCIONARIOS DE MUCHOS DE ESTOS LIBROS GRATIS EN DESCARGA DIRECTA. 684 Pages.
Read more
Positive: 45 %