# Find (f^-1)'(a) for f(x) = 2x^3+3x^2+3x+7, a=7?

• Find (f^-1)'(a) for f(x) = 2x^3+3x^2+3x+7, a=7?

Answer #1 | 08/02 2014 12:12
(f^-1(x))' = 1/f'(f^-1(x) ) f'(x) = 6x^2 + 6x + 3 f^-1(7) = 0, because f(0) = 7 f'(0) = 3 so 1/f'(0) = 1/3
Positive: 53 %
Answer #2 | 08/02 2014 12:48
We can clearly see that f(0) = 7, therefore f⁻¹(7) = 0 f(x) = 2x³ + 3x² + 3x + 7 f'(x) = 3x² + 6x + 3 f'(0) = 3 By definition of inverse functions: f(f⁻¹(x)) = x Differentiate both sides, using chain rule on left side f'(f⁻¹(x)) * (f⁻¹)'(x) = 1 (f⁻¹)'(x) = 1/f'(f⁻¹(x)) (f⁻¹)'(7) = 1/f'(f⁻¹(7)) ........... = 1/f'(0) ........... = 1/3 ------------------------------ General rule: f(b) = a ----> (f⁻¹)'(a) = 1/f'(b)
Positive: 47 %
Answer #3 | 09/02 2014 07:05
f(g(x)=x f(0)=7=>g(7)=0 f'(g(x)g'(x)=1 g'(x)=(f^-1)'(x)=1/f'(g(x)) = 1/f'(0) f'(x)=6x^2+6x+3 f '(0)=3 so (f^-1)'(7)=1/3
Positive: 27 %
Answer #4 | 08/02 2014 13:23
Let f^-1(7) = c f(c) = 7 2c^3+3c^2+3c+7 = 7 2c^3+3c^2+3c=0 c(2c^2+3c+3) = 0 c=0 2c^2+3c+3 has complex roots Therefore, f^-1(7) = 0 (f^-1)'(7) = 1 / f' (f^-1(7)) = 1 / f' (0) f'(x) = 6x^2+6x+3 f'(0) = 3 1/f'(0) = 1/3
Positive: 10 %

3.If f(x) = 3x2 2, nd f(b 2): (A) ... 9.Find the zeros of the function g(x) = 3x2 5x+ 2 p x+ 2 (A) 2 3 ... Math 112 Final Exam Study Aid 7 of 39
Positive: 53 %
Let and Find (a) the f(x) = 5 3x composition, 2 g(x) ... 8 3x 4 3x f 1(x) y=5 3x 2 x=, , , ... ,log49(343) x 49x 343 72x 73 2x 3, (b) .x ...
Positive: 48 %
Find the vertical and horizontal asymptotes of the graph of f(x) = ... 6. f(x) = 4x x3 + 8 7. f(x) = ln(3x 9) 8. f(x) = ln(2x+ 3) 9. For the function y = f ...