# Evalute the integral ∫ (7x^2+8x+8)/(x) dx from (e,1)?

• Evalute the integral ∫ (7x^2+8x+8)/(x) dx from (e,1)?

Answer #1 | 08/02 2014 12:39
Simplify, then integrate (7x + 8 + 8/x) * dx Integrate (7/2) * x^2 + 8x + 8 * ln|x| + C From e to 1 (7/2) * (1^2 - e^2) + 8 * (1 - e) + 8 * (ln|1| - ln|e|) => (7/2) * (1 - e^2) + 8 * (1 - e) + 8 * (0 - 1) =< (7/2) * (1 - e^2) + 8 * (1 - e) - 8 => (1/2) * (7 * (1 - e^2) + 16 * (1 - e) - 16) => (1/2) * (7 - 7e^2 + 16 - 16e - 16) => (1/2) * (7 - 16e - 7e^2)
Positive: 25 %
Answer #2 | 09/02 2014 07:30
∫ (7x^2+8x+8)/(x) dx = 7 ∫ x dx + 8 ∫ dx + ∫ 8 / x dx = (7/2) x^2 + 8x + 8 ln(x) Let F(x) = (7/2) x^2 + 8x + 8 ln(x) F(1) = 7/2+8+8ln(1) = 23/2 F(e) = 7e^2/2 + 8e+8 = 55.608 F(1) - F(e) = 11.50 - 55.608 = -44.108
Positive: 19 %

The Oddball Function The Integral of 1 over X : There is one function where our integral formula does not work. ... dx is just 1 so that's no problem,
Positive: 25 %
Evaluating Double Integrals. ... syms x y firstint=int(x*y,y,1-x,1-x^2) answer=int ... 3*x + 1. Published with MATLAB® 7.8 ...
Positive: 20 %
Find the indefinite integral:? [(x - 4)(x + 8)]dx (1/3)x 3 + 2x ... 6x-4 + 7x 2 + C [6x + x 7 ... Find the indefinite integral:? [e + x]dx. 1 + C. e x + (1 ...